
HEAT TRANSFER IN INTENSIVE NONSTATIONARY PROCESSES 
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A theory is exposed of intensive nonstationary heat-conduction processes, based 
on energy transfer mechanisms by means of carriers, emitted and absorbed by par- 
ticles of the material. Results are provided of solving the integrodifferential 
transport equation by a difference method. 

The heat transport differential equations usually applied do not make it possible to 
account for the effect of the spatial scale of the body on its transport characteristics, 
and ultimately on the temperature field. This effect is substantial for intensive nonsta- 
tionary processes, when the heat carrier mean free path is commensurate with the spatial 
scale of the body or that of the temperature field. 

Account of this effect, as well as of the finite propagation velocity of temperature 
perturbations, can be provided on the basis of the energy transport mechanism by means of 
carriers, emitted and absorbed by particles of the material [i]. 

Consider the energy state of some particle a belonging to a solid. The heat balance 
equation 

OE~ r 

5~ ?-=I 

is valid for it. In this equation the product oayJy~ is the energy acquired by particle 
from particle u per unit time. The summation over F particles provides the total energy 

acquired by particle a from the other particles of the body per unit time. The energy lost 
by particle a per unit time due to carrier emission is represented by the term q~. The 
last term in the right hand side of the equation is the power of external and internal energy 
sources. 

Equation (i), valid for any particle of the body, contains three unknown functions, 
E~, q~, and Jya" Therefore, to solve it one needs two additional relations, relating the 
functions q~, Jya and E a. The functional dependence between the energy qu emitted by 
particle y per unit time, and the specific carrier energy flux Jy(n), created by it through 
a spherical surface of radius ~ is determined by the structure of the body and the shape 
of the carrier. We place the origin of spherical coordinates at the center of particle y, 
and partition the volume surrounding it by surfaces n = const into elementary volumes dV = 
4~=dn. The energy of carriers emitted by particles ~, absorbed in the volume dV of a homo- 
geneous body, is dQy = J(n)4~n2dnF, where F is the total effective cross section of particle 
absorption per unit volume. 

The quantity J(n)4~n 2 is the energy flux Qy(n), transported through a spherical surface 
of radius n by the carriers emitted by particle y. Bearing in mind that carriers which were 
emitted by particle u at the moment of time x are incident on particle removed from particle 
y at moment x-R/v, as well as that in the absence of absorption by carriers Qy(n, ~) = qy(0, 
~-~/v), following integration over dQy we obtain 

Q~ (~1, "0 = q o ,  z - -  .. TI v -. G (B),  G (TI) = e x p  ( - -  

If the energy carriers are photons, v is the speed of light. 

For amorphous b o d i e s ,  whose p a r t i c l e s  a r e  d i s o r d e r l y  a r r anged  wi th  equal  p r o b a b i l i t y  a t  
S 

any portion of the volume, F = ~,ns. In bodies of an ordered structure a chain of other 
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sites is located at equal intervals at each line passing through two sites of the crystal 
lattice. Placing the particle centers at the sites of this chain, each particle can direct- 
ly exchange carriers with two neighbors only, since the remaining particles are in the 
shadow. This fact decreases the probability of carrier absorption by particles, and is 
equivalent to a decrease in the particle absorption cross section. For these bodies F = 

s 
~Zosns, where the particle overlap coefficient is ~ > i. For anisotropic bodies the func- 

tion F has a more complicated shape [i]. From the energy balance equation it fQilows for 
particles of an isotropic unbounded body in the equilibrium state that the function G satis- 
fies the condition 

i FGdq:= 1. (3) 

The dependence q = q(E) is determined by the physical properties of the body particles, 
and is unrelated to the configuration and state of the latter. To establish it consider an 
amorphous planar plate in a stationary nonequilibrium state, in which energy transfer is 
realized by one of the carrier shapes. We direct the x-axis normally to the plate boundary, 
and the t-axis - along the boundary. The temperature field in the plate is expressed by the 
dependence t = t(x). It follows from experimental data that the thermal conductivity coeffi- 
cient % of amorphous bodies is directly proportional to the specific heat capacity. In this 
connection it is noted for the plate considered that % = apc, where a # a(t). The signi- 
ficant deviations from the condition a z a(t) for real bodies can be explained by some tem- 
perature dependence of body structures, as well as the number of shapes of carriers partici- 
pating in the energy transfer. For the plate considered the specific thermal flux Q along 
the axis remains unchanged, i.e. 

Ot Ot OU Ot dU 
Q = - - ~  = - - a c 9 - -  = - - a - -  = - - a  =cons t .  (4) 

Ox Ox Ot Ox Ox 

It follows from Eq. (4) that the specific internal energy U, and consequently also the mean 
energy of body particles E, depends linearly on the coordinate x. 

A particle with coordinate x from particle of an isothermal layer of thickness dn, re- 

F | 
moved by distance n, acquires energy dQ ~ 2 dNq(x-~ ~) fG (]I/~2~- ~2)d~. In that case the 

0 

energy balance equation for layer particles with coordinate x can be represented, with 
account of condition (3), in the form 

+ i 2 
0 0 

This equation will be satisfied under the condition that q(x + ~) + q(x-~)-2q(x) = 0. It 
hence follows that q, as well as E, depend linearly on the coordinate x, and, consequently, 
q depends linearly on E. Since particles occurring at vanishing energy level cannot emit 
energy, then 

q = eE, (5) 

where E is the energy emission coefficient, which is characteristic of body particles and 
is independent of E. If energy transport iN the body is realized by carriers of various 
shapes, then each atom, according to its number of degrees of freedom, can emit and absorb 
only three shapes of carriers at each moment of time. In this case relationship (5) is 
valid for each degree of freedom, and the total energy of a particle consists of the ener- 
gies transmitted by each degree of freedom. 
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Fig. i. Comparison of the solutions of the Fourier 
heat conduction equation and the integrodifferential 
transfer equation, Q, 10 6 W/m. 

If the energy carriers are photons, then from (5) follows the following law of intensive 
spectral emission: atoms in the i-th energy level at frequency ~ emit per unit time in a 
coordinate system attached to them energy quanta h~, whose magnitude is proportional to the 
energy level i and to the number of atoms niv , i.e. 

q~ = ~n~jh~. (6 )  

Starting from Eq. (6), one can obtain the Planck equation for the radiative capability 
of an absolutely black body, the well-known particledistribution functions in energy, as 
wellas new distribution functions for a finite number of particles and a finite upper limit 
in the spectrum of energy states [i]. It must be noted that in this case the necessity is 
removed of using thefundamentalassumption of statistical mechanics of equal probability 
of all admissiSle states [2], whose physical essence is not totally disclosed. According to 
(5) one constructs the interatomic interaction potential, and on its basis one obtains an 
equation of state of condensed bodies, from which follow the Hooke, Gruneisen, and thermal 
expansion laws [3]. 

Substituting relations (2) and (5) into Eq. (I) and transforming from summation to inte- 
gration, for a body with sufficiently large volume we reach the following integrodifferential 
transport equation in a Cartesian coordinate system: 

- . Fb u b ~ ( x + ~ . , g + % ,  z + ~ ,  
Ox ....... (7) 

~ _ Ob~ )--Ubs (x, y, Z,~)] 4~ 2Gb dn=dnvdnz _}_ W. 

Here 
S Bs S B~ [ ~] 

s = l  b = l  s=1 b----I 0 

the number of shapes of particles emitted by atoms of kind s, nbs is the particle density of 
kind s, emitting carriers of shape b, and ebs is the energy belonging to a single degree of 
freedom of a particle of kind s, emitting carriers of shape b. Introducing the averaged 
values: of the characteristics E, F, v, G, the integrodifferential transport equation can be 
written in the form 

where N is a function of the radius-vector r of a givenpoint, of the radius-vector q joining 
the given point With an arbitrary point of the body, of microscopic characteristics, and of 
the body structure, N = EFG/(4~q2). Related to the fast decrease of the function N with in- 
creasing q, the volume V over which the integration is carried out can be restricted by a 

sphere of radius R, determined by the condition Ndn-- ~" Ndn) / Ndn~ I. Expanding the 
0 0 0 
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Fig. 2 
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Relative thermal conductivity as a function of the 

bar and film thickness. Ro, i0 -7 m. 

function ubs x + N=, Y+Nu' z+Nz, T-- near the point (x, y, z, T) in a Taylor series in 
o 

powers of ~x, ~', q~, q/v, and retaining terms up to third order of smallness, we reach a 
hyperbolic equation which is ordinarily used to describe intensivetransport processes. 
At v § ~ this equation transforms to the Fourier thermal conductivity equation with a thermal 
conductivity coefficient for a homogeneous body 

L 1 s B~ = Z ~ nbsCbsSbs 
3 x_a F~ (9) 

s = l  b = l  

Expression (9) agrees with experimental data and with the experimental Debye equation [i]. 

To find the function U at a boundary point P and its neighborhood it is necessary to 
determine the composition of the source function W, related to energy transfer to body 
particles, transferred directly from external heat sources. The simulation of various 
boundary conditions, particularly heat transfer conditions of the first, second, and third 
kind, can be carried out by conditional broadening of the emission region by attaching to 
the surface boundary a shell of radius R. The physical characteristics and the heat content 
distribution U over the shell thickness satisfy the symmetry condition with respect to the 
surface boundary. If near the boundary point P there are no energy sources, in this case 
the conditions of thermal isolation of the body are realized at the point P. 

Under conditions of heat exchange of the second kind the thermal flux QB(P) through the 
surface boundary is given. If the distribution of supply flux QB of carriers over directions 
is that of uniform likelihood, for points removed from the surface boundary by distance 
the function is 

(7,~)= 2 F(4)~ qB P' ~ o o (42 + ~2)8/2 (10) 

To satisfy boundary conditions of the first kind t(P, r) = ~(T) the function QB is found as 

a resuit of simultaneous solution of the equations aU=cpd~ and (i0), as well as Eq. (8), 
0~ d~ 

written for the point P. Under conditions of heat exchange of the third kind ~ Ot(P, T) _ 
0x 

~e[t(P, T)--te], where a c is the heat transfer coefficient, and t c is the medium temperature, 

the thermal flux QB(P, T) is found by simultaneous solution of equations QB=~e I U(P, ~) 
L c@ 

to,and (8), (i0) 4 
N 

Since the time R/v, during which the energy carrier covers distance R, is usually short in 
comparison with the time scale of a real thermal process, in the expansion of the function U 
in a Taylor series in the small time parameter R/v one may retain only the first two terms. 
Equation (8) then acquires the following form in Cartesian coordinates 
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OU (x, y, z, r) 

Or = S 
- - R  - -  - -  

z + rh, r) - -  U (x, y, z, "0-- 

o rl OU (x + fix, y +Or flu, z + rh, r). ] N 01) d~lxd%dah + W, 
(11) 

where x, y, z are the projections of the vector r on the coordinate axes, and qx, qy, qz 
are the projections of the vector q on the x, y, z axes. 

By its shape Eq. (Ii) is close to the integrodifferential equations encountered in the 
theory of radiative transfer and in studies of energy transfer hy electrons in a plasma. 
Group methods [4-6] are widely used to solve them. A related method can also be used to 
solve Eq. (Ii). In the region considered one introduces the difference grid xi,= iA x, i = 
0, i, ...; yj = jay, j = 0, i, ...; Zm = mA z, m = 0, i .... ; ~k = kAT, k = 0, i, .... On 
this grid Eq. (ii) is approximated by thefollowing difference equation: 

Here 
~ 7 ~ R .  For simplicity of calculations one can put IAx = JAy = ~z = R. 

If the soecific internal energy U = cot and the body characteristics depend on one 

spatial coordinate, Eq. (8)is reduced to the form 

uk+luk, i+I]+Jra~I( fl.~Hk .h--I ) 
,,m--A,r, ore= ~%" Z U~TFn--U~'m----v ~"'iTm--'qmAx N':-rnAxAYAz'4"W~ra''i , , (12) 

" /= i - t  "7=~'-s ~----ra--.,U 

nrf E = [(T--i)2Ax 2 +(]'/)2Ag+(m--m)2A 2. l ~ The numbers 1, J, and M satisfy the condition 

OU (x, r) R 
= [ [U (x + 11, x) Jr" U (x - -  ~1, r) - -  2U (x, x)] Nld~! - -  

- - i [  rOU(x+rb r) + O r  OU(x--%'O ] N 2 d ~ i + W ' O x  
(13) 

where 

1 F s i  ~d~ G('I/'~+~I z)d;; 
N I =  2 o[~2+rlz 

r 

1 Fs~ ~d~ G ('l/~-ff'-+ rl ~) dE. 
N~= 20 o - I / ~  

I'sFEi(--FN), Ng = s exp(--FN). According to (9) the thermal For a homogeneous body N I =-- 2 20" 

conductivity coefficient is expressed in terms of the averaged values of the parameters 
and F by the relation ~ = cpE/3F 2. 

The integration in Eq. (13) can be carried out on the difference grid T k = kAT, k = 0, 
i, ..., AT > 0; x i = iA x, i = -I, -I + i, ..., I L + I, A x = L/I L by the following explicit 

difference scheme: 

U~+I--U~ = X Qik+ W;'k (14) 
Ar i=i--I 

Here f=I~l+1, where the curved brackets imply the integral part in them, and Qj is the 

energy flux acquired by a particle located in the x i plane from the particle band xj < x < 
xj + i- If the plate consists of two layers with different characteristics o, s, n, F, c, p, 
while the contact boundary lies in the plane x C = iCA x, then under the condition x i < ic <- xj 
the quantity Qj is determined by the relation 
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where 

2 ) 
2 F~ 2 r 2  

- -E i ( - -~s ) (~s  [5~ + ~ ~ ) +  Fz -2--~-2 8xUi --  ~ 

+ exp ( - -  ~,+~) l~o + 2'F~ 

__ exp ( _  r [~o .+ - ~, -i- I ~ ]} 2F 2 6xU i --  ~,~ + (~s + 1)[~ , 

(15) 

~j+x = [3 + "qs+~F2; ~j = [~ --]- ~hF2; [~ = Ixc-- xjl x (F 1 --  F2); 

~0 U~--(Xj-J[-~) ~x ok ~1 [~ (~-~U~ - 1 -  k - - 1  = �9 = x ~ G ~ U  i ) - -  
' F~ 

k--I 
F 22 x,~S ; -- Ax -- 

-F~~ ;~"=-~2 ~w# ; 
12 

NJ = rain ([& --xs[, Ix~ -- XS+l;); Nj+I = max (I& -- xj;, [xi -- xs+1]). 

Here the subscripts 1 and 2 refer to quantities belonging to the first (0 < x < x C) and 
second (x C < x < L) layer. 

If nj+~ < ~C, i.e., the band xj < x < x.j+~, and a particle with coordinate xj are within 
the limits of a single layer 0 < x < xC, thenQj k is determined by expression (13), in which 
one must put F2 = F~. For the cases when x~ ~ x C~.~ x i or x~. ~ xe and x i > xc, expressions 
for Q k can be obtained from (15) by replacing the subscripts 1 and 2 in the quantities s, ] 
o, n, F by the opposite ones. If there are no internal energy sources in the body under 
consideration, and the nodal point x i is in the neighborhood of the surface boundary x B 

(x B = 0 or x B = L) at distance Ni=]XB--X~]~ ~, then the specific energy W k imparted to 

the layer particles x i by external energy sources of power QB is 

1 { El(--  F~h)} (16) W~ =-~- F~h Q~[exp (--F~h)+F~h Ei (--F~h)]+ TI~ Q ~ -  Q~-I 
v k~ 

For Di > R one can put Wi k = 0. At the nodes of the supplemental layer (i = --I, --I + i, 
..,, 1 and i = I L + i, I L + 2, ..., I L + i) the values of the grid function are determined 

rTk+l ?Tk+l 
after finding it at the nodes inside the layer bv the relationship ~iB-I = ~i~i. 

At the node x = Xc, located on the contact boundary of plate layers, the thermal con- 

tents U(x C - 0, ~k+1) and U(x C + 0, mk+ I) are determined separately by Eq. (14). The presence 
of a temperature jump on the contact boundary of two bodies during some initial time segment 

follows from the energy balance equation in the form (14), and is due to the thermal inertia 

of particles. The resulting energy flux QC through the surface x C is determined by alge- 
braic summation of the energy fluxes, transported by the carriers which are emitted by the 
elementary layer particles xj < x < xj+1, i = i C - I, i C - I + i, ..., i C + I - I. 

Figure 1 shows the results of temperature field calculations by the Fourier heat con- 
duction equation and by the integrodifferential transfer equation in a system of two un- 
bounded ice plates (% = 2.25; p = 913; c = 1830; s = 0.5.108 ) of thickness L = 10 -4 m, which 
at the moment of contact generation have the different temperatures t' = 1 and t" = 1. The 
external plate boundaries are thermally isolated. 

According to the Fourier equation, at the moment m = 0, when plate contact is generated, 
the thermal flux is QF = ~" In what follows the variation of the function QF is illustrated 
by curve 2 for Fourier number Fo = TX/(cpL 2) > 0. For r = Fo = 0 the temperature at the con- 
tact boundary acquires instantaneously the value 0.5(t' + t") = 0, and remains unchanged in 
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what follows. At the external boundary of the first plate the temperature variation t'BF 
is characterized by curve 5. 

According to the integrodifferential transport equation thermal flux Qi (curve 3) through 
the contact boundary remains bounded during the whole time of contact, while the functions 
QF and QI practically coincide for Fo > 0.05. At the contact boundary the temperature t C' 
of the first plate (curve i) varies monotonically from 1 to 0 when Fo increases from 0 to ~. 
In this case the temperature drop at the plate contact boundary, consisting of 2t'C, is due 
to the energy difference of their particles. The temperature at the external plate boundary 
t'BI (curve 4) practically coincides with t'BF. 

The integrodifferential transport equation makes it possible to explain the effect of 
reducing the specific thermal flux through the cross section of the body with the decrease 
in this cross section area. Consider the heat transfer along the axis of the bar. We in- 
troduce cylindrical coordinate system (r, z, ~), in which the z-axis coincides with the 
axis of the bar. It is assumed that the temperature gradient is parallel to the z-axis, 
and that there is no thermal flux through the outer surface of the bar. An energy flux 

dO = dfneU (z -]- ~h) ~l~d~l,d~hd~lo~ .exp ( - -  F ] /~l~ + ~l~ ) 
+ 

is incident from theelementary volume ~rd~rd~zdnm, whoseposition is determined by the co- 
ordinates z + nz, r + Nr, w + ~m, on the area df, located at the z cross section near the 
point (z, r, ~). The integration dQ over the coordinate dn r is carried out within the 
limits from 0 to R*, where for a bar of radius Ro R* is determined from the system of equa- 
tions 

R *  s in  ~o = Ro s in  co o, r = R *  cos o) - -  Ro cos o) o, 

wherethe angle mo must be considered as a computational parameter. 

Integration of the expression for dQ over nr, ~z and Nw makes it possible to calculate 
the:distribution of the heat conduction coefficient X over the bar cross section according to 

the relation dQp _ Ot %O~z' where dQp is the resulting energy flux through dr. A noticeable 
df 

deviation of the mean bar cross section value X from the quantity Xo = cps/3F 2, corresponding 
to the case of a massive body, occurs when the bar radius Ro is commensurate with or smaller 
than the quantity R. For a sufficiently thin bar one can neglect, within first approximation, 
the variation in the heat conduction coefficient with its cross section. In this case the 
integration over dQ is simplified substantially. 

Figure 2 shows the results of calculating the relative thermal conductivity X/lo along 
the axis of a thin silver rod, found in a stationary nonequilibrium state. The points re- 
present experimental data on the thermal conductivity of thin silver plates [7]. It is seen 
from Fig. 2 that the computational results are in qualitative agreement with experimental 
data. 

The results of numerical experiments indicate that the use of the Fourier heat conduc- 
tion equation to determine the temperature and heat fluxes near body contact for relatively 
short times of their thermal interaction (Fo < 0.05), as well as to find the thermal flux 
along the axis of a thin rod, gives highly inaccurate results. In this case the study of 
the thermal state of the system must be carried out on the basis of the integrodifferential 
transport equation. 

NOTATION 

E~, energy of particle a relative to zero level; o~y, effective cross section of par- 
ticle absorption ~ relative to carriers emitted by particles with ordinal number ~; qa, 
energy of carriers emitted by a particle ~ per unit time; Jy~, specific energy flux of 
carriers emitted by a body particle y incident on particle a at moment T; F, number of body 
particles emitted by carriers reaching particle a; w=, power supplied to particle ~ by 
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internal and external energy sources relative to the body considered; W, specific power 
supplied to a unit volume of the body from external and internal energy sources; U, specific 
internal energy of the body; V, volume of the body; v, carrier propagation velocity; S, 
number of species of body particles; % and a, thermal conductivity and thermal diffusivity; 
c, specific heat; p, body density; F, total effective cross section of particle absorption 
of unit volume; g, energy emission coefficient; E~, emission coefficient of photons of fre- 
quency ~ by body particles; niv , density of particles found at frequency ~ at the i-th 
energy level; h, Planck's constant; Fo, Fourier number; and El, integral exponential func- 
tion. 
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TEMPERATURE FIELD IN A HALF-SPACE WITH A FOREIGN INCLUSION 

Yu. M. Kolyano, Yu. M. Krichevets, 
E. G. Ivanik, and V. I. Gavrysh 

UDC 536.24 

A stationary temperature field is studied in a half-space containing a heat-liberat- 
ing disclike foreign inclusion of small size, Convective heat transfer with the 
external medium is realized through its boundary surface. 

Let us consider an isotropic half-space containing a foreign cylindrical inclusion of 
radius R and height I at a distance d from its boundary surface, where uniformly distributed 
internal heat sources of intensity qo act. Let the body under consideration be referred to 
a cylindrical coordinate system. We place the origin at the center of the inclusion. Con- 
vective heat transfer with the external medium of temperature t c is given at the boundary 
surface z = ~ - d. 

To d~termine the stationary temperature field, we have the heat-conduction equation 
[i] 

r ar --of-r + -ffz ~ = - qoS_ ( R - -  r) N (z), (i) 

w h e r e  0 = t--re; N(z) = S _ ( z +  l)--S+(z--l) .  

The boundary conditions are written in the form 

a@ 
~,1 - -  - - c z z o  for 

Oz 
z = - - l - - d ,  0---0 for r ,  z - - + o o ,  

--=0 for r . - - > - o o .  
Or 

(2) 
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